Tilting for commutative rings and its applications

part I: tilting modules and approximations

Jan Trlifaj, Charles University

Second International Meeting in Commutative Algebra and Related Areas ICM - USP Sao Carlos, Brazil

* Celebrating Sylvia and Roger Wiegand's 150th birthday

*

Overview of the lecture series topics

I. Tilting modules and classes.

II. Structure of tilting and cotilting classes over commutative noetherian rings.

III. Zariski locality for tilting quasi-coherent sheaves.

I. Tilting modules and classes.

II. Tilting classes are of finite type.

III. An application to Iwanaga-Gorenstein rings.

IV. Tilting approximations.

I. Tilting modules and classes

Let R be a ring and $n < \omega$. A right R-module T is n-tilting provided

(T1) $pd_R(T) \le n$, *i.e.*, there is an Add(R)-resolution of T of length $\le n$. (T2) $Ext_R^i(T, T^{(\kappa)}) = 0$ for all $1 \le i$ and all κ , *i.e.*, T is a strong splitter. (T3) There is a long exact sequence $0 \to R \to T_0 \to \cdots \to T_n \to 0$ with $T_i \in AddT$, *i.e.*, there is an Add(T)-coresolution of R of length $\le n$.

Add(T) = all direct summands (of possibly infinite) direct sums of copies of T.

Tilting module = *n*-tilting module for some $n < \omega$.

Tilting modules

A tilting module T is

- good if (T3) holds with Add T replaced by add T.
- classical if $T \in \text{mod}-R$ (i.e., T is strongly finitely presented).

Example

T is a 0-tilting module, iff T is a projective generator. Such T is always good, and it is classical, iff T is finitely generated.

Two tilting modules T and T' are equivalent if $\operatorname{Add} T = \operatorname{Add} T'$.

Lemma

- Each tilting module is equivalent to a good one.
- Each classical tilting module is good.

For a tilting module T, we define

- $\mathcal{B} = T^{\perp} = \bigcap_{i>0} \operatorname{KerExt}_{R}^{i}(T, -)$ is the (right) tilting class of T.
- $\mathcal{A} = \text{KerExt}_{R}^{1}(-, \mathcal{B})$ is the left tilting class of \mathcal{T} .

Lemma

- A is the class of all modules possessing an Add *T*-coresolution of length ≤ n.
- \mathcal{B} is the class of all modules possessing an Add T-resolution.
- $\mathcal{A} \cap \mathcal{B} = \operatorname{\mathsf{Add}} T$.

The classic case - Miyashita'1986

Let T be a classical n-tilting module. Then for each $i \leq n$ there is a category equivalence

$$\bigcap_{j \le n, j \ne i} \operatorname{Ker}(\operatorname{Ext}_{R}^{j}(\mathcal{T}, -)) \stackrel{\operatorname{Ext}_{R}^{i}(\mathcal{T}, -)}{\operatorname{Tor}_{s}^{i}(-, \mathcal{T})} \bigcap_{j \le n, j \ne i} \operatorname{Ker}(\operatorname{Tor}_{j}^{S}(-, \mathcal{T}))$$

where S = End T.

The good case - Bazzoni'2011

Let R be a ring and T be a good n-tilting module. Then for each $i \le n$ there is a category equivalence

$$\bigcap_{j \leq n, j \neq i} \operatorname{Ker}(\operatorname{Ext}_{R}^{j}(\mathcal{T}, -)) \stackrel{\operatorname{Ext}_{R}^{i}(\mathcal{T}, -)}{\underset{\operatorname{Tor}_{S}^{i}(-, \mathcal{T})}{\overset{j \leq n, j \neq i}{\overset{j \leq n, j \neq i}}}} \operatorname{Ker}(\operatorname{Tor}_{j}^{S}(-, \mathcal{T})) \cap \mathcal{E}_{\perp}$$

where S = EndT, $\mathcal{E}_{\perp} = \{X \in \mathcal{D}(S) \mid \text{Hom}_{\mathcal{D}(S)}(\mathcal{E}, X) = 0\}$, and \mathcal{E} is the kernel of the total left derived functor $\mathbb{L}(-\otimes_S T)$.

A basic restriction for the commutative setting

Lemma

(i) If $T \in \text{mod}-R$ and $1 \leq \text{pd}_R(T) = n < \infty$, then $\text{Ext}_R^n(T, T) \neq 0$. Hence T fails condition (T2).

(ii) Each classical tilting module is projective.

Proof

(i) All syzygies of T are finitely presented, so $pd_R(T) = max_m pd_{R_m}(T_m)$. Take $m \in mSpec(R)$ such that $pd_{R_m}(T_m) = n$. Then $T_m \in mod-R_m$ and $(Ext_R^n(T,T))_m \cong Ext_{R_m}^n(T_m,T_m)$, so w.l.o.g., we can assume that R is local. Then T has a minimal free resolution, \mathcal{F} , given by an iteration of projective covers. So $d_k(F_k) \subseteq mF_{k-1}$ for all k > 0 where d_k is the differential. As $Ext_R^n(T,-)$ is right exact, the epimorphism $T \to T/mT$ induces a surjection $Ext_R^n(T,T) \to Ext_R^n(T,T/mT)$. However, $Ext_R^n(T,T/mT) \cong Ext_R^1(\Omega^{n-1}(T),T/mT) \cong Hom_R(F_n,T/mT) \neq 0$. (ii) By part (i).

Example: tilting over Dedekind domains

Let R be a Dedekind domain with the quotient field Q.

For each $P \subseteq \operatorname{mSpec}(R)$, let A_P be the module defined by $R \subseteq A_P \subseteq Q$ and $A_P/R \cong \bigoplus_{p \notin P} E(R/p)$.

Example

 $T_P = A_P \oplus A_P/R$ is a tilting module with the tilting class $\mathcal{B}_P = \{A \in \text{Mod}-R \mid Ap = A \text{ for all } p \notin P\}.$

Theorem

Each tilting module T is equivalent to T_P for some $P \subseteq \operatorname{mSpec}(R)$.

II. Tilting classes are of finite type

The finite type theorem

Theorem

Let T be a tilting module with the left and right tilting classes A and B.

Then there is a subset $\mathcal{S}\subseteq\mathcal{A}$ consisting of strongly finitely presented modules, such that

 $\mathcal{B} = \operatorname{Ker}\operatorname{Ext}^1_R(\mathcal{S}, -).$

The largest choice for S is $S = A \cap \text{mod}-R$; in this case $A \subseteq \lim S$.

Structure of the proof: First, one proves countable type by set-theoretic homological algebra, by induction on $pd_R(T)$. Then one proceeds to finite type using Mittag-Leffler conditions.

Consequences of the finite type

Relations to logic

Each right tilting class \mathcal{B} is definable, i.e., closed under direct limits, pure submodules and products.

In fact, elements of ${\cal B}$ can be characterized by a set of first order formulas of the language of the theory of modules.

Resolving subcategories

A subcategory C of mod-R is called resolving, if C contains all finitely generated projective modules, C is closed under extensions and direct summands, and $A \in C$ whenever A fits in a short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ with $B, C \in C$.

Corollary

n-tilting classes \mathcal{B} correspond 1-1 to resolving subcategories \mathcal{C} of $\operatorname{mod}-R$ consisting of modules of projective dimension $\leq n$.

The correspondence: $\mathcal{B} \mapsto \text{mod}-R \cap {}^{\perp}\mathcal{B}$, and $\mathcal{C} \mapsto \mathcal{C}^{\perp}$.

Dedekind domains revisited

For $P \subseteq \operatorname{mSpec}(R)$, we can take $\mathcal{S}_P = \{R/p \mid p \in P\}$.

III. An application to Iwanaga-Gorenstein rings

Finitistic dimensions of Iwanaga-Gorenstein rings

- Let n ≥ 0. A ring R is n-Iwanaga-Gorenstein, if R is left and right Noetherian, and both the left and the right injective dimension of R equals n. E.g., 0-Gorenstein = quasi-Frobenius.
- The big finitistic dimension of a ring *R*, denoted by Fdim(R), is the supremum of projective dimensions of all modules that have finite projective dimension.
- The little finitistic dimension, denoted by fdim(R), is the supremum of projective dimensions of all finitely generated modules that have finite projective dimension.

Theorem

Let *R* be an *n*-Iwanaga-Gorenstein ring. Then Fdim(R) = fdim(R) = n.

Proof

Since *R* is *n*-lwanaga-Gorenstein, $\mathcal{P} = \mathcal{P}_n = \mathcal{I}_n$, whence $\mathsf{Fdim}(\mathsf{R}) = \mathsf{n}$. Let $\mathcal{S} = \mathcal{P} \cap \mathsf{mod} - \mathcal{R}$.

Idea of the proof: Show that \mathcal{P} is the left tilting class of an (infinitely generated) *n*-tilting module T. Then the finite type of T will give $\mathcal{P}^{\perp} = \mathcal{S}^{\perp}$, whence $\mathcal{P} = {}^{\perp}(\mathcal{S}^{\perp})$, and $\operatorname{Fdim}(\mathsf{R}) = \operatorname{fdim}(\mathsf{R})$.

Constructing the tilting module T: Consider the minimal injective coresolution of R, $0 \to R \to I_0 \to \cdots \to I_n \to 0$. Then $T = \bigoplus_{i \le n} I_i$ is obviously an *n*-tilting module. Let \mathcal{A} and \mathcal{B} be the left and right tilting classes of T. Then $\mathcal{A} \cap \mathcal{B} = \operatorname{Add} T \subseteq \mathcal{I}_0$.

We will show that $\operatorname{Add} T = \mathcal{I}_0$: Let I be injective and $B \in \mathcal{B}$. Then B has an $\operatorname{Add} T$ -resolution \mathcal{R} . Let B_n be the *n*-the syzygy of B in \mathcal{R} . Then $\operatorname{Ext}^1_R(I,B) \cong \operatorname{Ext}^{n+1}_R(I,B_n) = 0$, because $\operatorname{Add} T \subseteq \mathcal{I}_0$ and $I \in \mathcal{P}_n$. So $I \in \mathcal{A}$, and $I \in \operatorname{Add} T$.

 $\mathcal{A} =$ the class of all modules possessing a \mathcal{I}_0 -coresolution of length $\leq n$. That is, $\mathcal{A} = \mathcal{I}_n = \mathcal{P}$. So \mathcal{P} is the left tilting class of T.

Jan Trlifaj (Charles Univ.)

Tilting for commutative rings

The tilting module T_f behind the scenes

There is a partial order \leq on (the equivalence classes of) tilting modules by inclusion of the left tilting classes.

Assume that R is a right noetherian ring. Then $fdim(R) < \infty$, iff there exists a \leq -greatest element T_f . In this case $fdim(R) = pd_R(T_f)$.

Example

In the Iwanaga-Gorenstein case above, $T_f = \bigoplus_{i \le n} I_i$.

The Finitistic Dimension Conjecture

Does $fdim(R) < \infty$ hold for each artin algebra R?

Note: Even if R is an artin algebra, T_f need not be classical. (The latter happens iff $\mathcal{P} \cap \text{mod}-R$ is a covering class in mod-R.)

IV. Tilting approximations

Approximations of modules

A class of modules C is precovering if for each module M there is $f \in \operatorname{Hom}_R(C, M)$ with $C \in C$ such that each $f' \in \operatorname{Hom}_R(C', M)$ with $C' \in C$ has a factorization through f:

The map f is called an C-precover of M. If moreover f is surjective and $\operatorname{Ext}^1_R(C, \operatorname{Ker}(f)) = 0$ for each $C \in C$, then f is a special C-precover of M.

If moreover f is right minimal (i.e., fg = f implies g is an automorphism for each $g \in \text{End} C$), then f is a C-cover of M.

If each module has a special A-precover (A-cover), then A is special precovering (covering).

Approximations and tilting

The notions a (special) C-preenvelope, C-envelope, and of a (special) preenveloping and enveloping class are defined dually.

1-dimensional case

TFAE for a class of modules \mathcal{C} :

- \mathcal{C} is a right tilting class of some 1-tilting module.
- \mathcal{C} is a special preenveloping torsion class of modules.

n-dimensional case

Let *n* be a natural number. TFAE for a class of modules C:

- C is a (right) tilting class of some *n*-tilting module.
- C is a special preenveloping class closed under direct sums and direct summands, C is coresolving, and $^{\perp}C$ consists of modules of projective dimension $\leq n$.

R. Goebel, J. Trlifaj, Approximations and endomorphism algebras of modules, 2nd rev. & ext. ed., GEM 41, W. de Gruyter, Berlin-Boston 2012.